+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, y) -> y
+2(s1(x), y) -> s1(+2(x, y))
+2(x, +2(y, z)) -> +2(+2(x, y), z)
f1(g1(f1(x))) -> f1(h2(s1(0), x))
f1(g1(h2(x, y))) -> f1(h2(s1(x), y))
f1(h2(x, h2(y, z))) -> f1(h2(+2(x, y), z))
↳ QTRS
↳ DependencyPairsProof
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, y) -> y
+2(s1(x), y) -> s1(+2(x, y))
+2(x, +2(y, z)) -> +2(+2(x, y), z)
f1(g1(f1(x))) -> f1(h2(s1(0), x))
f1(g1(h2(x, y))) -> f1(h2(s1(x), y))
f1(h2(x, h2(y, z))) -> f1(h2(+2(x, y), z))
F1(g1(h2(x, y))) -> F1(h2(s1(x), y))
+12(x, s1(y)) -> +12(x, y)
F1(h2(x, h2(y, z))) -> +12(x, y)
F1(h2(x, h2(y, z))) -> F1(h2(+2(x, y), z))
F1(g1(f1(x))) -> F1(h2(s1(0), x))
+12(s1(x), y) -> +12(x, y)
+12(x, +2(y, z)) -> +12(x, y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, y) -> y
+2(s1(x), y) -> s1(+2(x, y))
+2(x, +2(y, z)) -> +2(+2(x, y), z)
f1(g1(f1(x))) -> f1(h2(s1(0), x))
f1(g1(h2(x, y))) -> f1(h2(s1(x), y))
f1(h2(x, h2(y, z))) -> f1(h2(+2(x, y), z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
F1(g1(h2(x, y))) -> F1(h2(s1(x), y))
+12(x, s1(y)) -> +12(x, y)
F1(h2(x, h2(y, z))) -> +12(x, y)
F1(h2(x, h2(y, z))) -> F1(h2(+2(x, y), z))
F1(g1(f1(x))) -> F1(h2(s1(0), x))
+12(s1(x), y) -> +12(x, y)
+12(x, +2(y, z)) -> +12(x, y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, y) -> y
+2(s1(x), y) -> s1(+2(x, y))
+2(x, +2(y, z)) -> +2(+2(x, y), z)
f1(g1(f1(x))) -> f1(h2(s1(0), x))
f1(g1(h2(x, y))) -> f1(h2(s1(x), y))
f1(h2(x, h2(y, z))) -> f1(h2(+2(x, y), z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
+12(x, s1(y)) -> +12(x, y)
+12(s1(x), y) -> +12(x, y)
+12(x, +2(y, z)) -> +12(x, y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, y) -> y
+2(s1(x), y) -> s1(+2(x, y))
+2(x, +2(y, z)) -> +2(+2(x, y), z)
f1(g1(f1(x))) -> f1(h2(s1(0), x))
f1(g1(h2(x, y))) -> f1(h2(s1(x), y))
f1(h2(x, h2(y, z))) -> f1(h2(+2(x, y), z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(x, s1(y)) -> +12(x, y)
Used ordering: Polynomial Order [17,21] with Interpretation:
+12(s1(x), y) -> +12(x, y)
+12(x, +2(y, z)) -> +12(x, y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)
POL( +12(x1, x2) ) = max{0, x2 - 2}
POL( s1(x1) ) = x1 + 3
POL( +2(x1, x2) ) = x1 + x2 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
+12(s1(x), y) -> +12(x, y)
+12(x, +2(y, z)) -> +12(x, y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, y) -> y
+2(s1(x), y) -> s1(+2(x, y))
+2(x, +2(y, z)) -> +2(+2(x, y), z)
f1(g1(f1(x))) -> f1(h2(s1(0), x))
f1(g1(h2(x, y))) -> f1(h2(s1(x), y))
f1(h2(x, h2(y, z))) -> f1(h2(+2(x, y), z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(s1(x), y) -> +12(x, y)
Used ordering: Polynomial Order [17,21] with Interpretation:
+12(x, +2(y, z)) -> +12(x, y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)
POL( +12(x1, x2) ) = max{0, x1 + x2 - 2}
POL( s1(x1) ) = x1 + 3
POL( +2(x1, x2) ) = x1 + x2 + 2
+2(x, +2(y, z)) -> +2(+2(x, y), z)
+2(x, 0) -> x
+2(0, y) -> y
+2(x, s1(y)) -> s1(+2(x, y))
+2(s1(x), y) -> s1(+2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
+12(x, +2(y, z)) -> +12(x, y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, y) -> y
+2(s1(x), y) -> s1(+2(x, y))
+2(x, +2(y, z)) -> +2(+2(x, y), z)
f1(g1(f1(x))) -> f1(h2(s1(0), x))
f1(g1(h2(x, y))) -> f1(h2(s1(x), y))
f1(h2(x, h2(y, z))) -> f1(h2(+2(x, y), z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(x, +2(y, z)) -> +12(x, y)
+12(x, +2(y, z)) -> +12(+2(x, y), z)
POL( +12(x1, x2) ) = max{0, x2 - 2}
POL( +2(x1, x2) ) = x1 + x2 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, y) -> y
+2(s1(x), y) -> s1(+2(x, y))
+2(x, +2(y, z)) -> +2(+2(x, y), z)
f1(g1(f1(x))) -> f1(h2(s1(0), x))
f1(g1(h2(x, y))) -> f1(h2(s1(x), y))
f1(h2(x, h2(y, z))) -> f1(h2(+2(x, y), z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
F1(h2(x, h2(y, z))) -> F1(h2(+2(x, y), z))
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, y) -> y
+2(s1(x), y) -> s1(+2(x, y))
+2(x, +2(y, z)) -> +2(+2(x, y), z)
f1(g1(f1(x))) -> f1(h2(s1(0), x))
f1(g1(h2(x, y))) -> f1(h2(s1(x), y))
f1(h2(x, h2(y, z))) -> f1(h2(+2(x, y), z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F1(h2(x, h2(y, z))) -> F1(h2(+2(x, y), z))
POL( F1(x1) ) = max{0, x1 - 3}
POL( h2(x1, x2) ) = x2 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
+2(0, y) -> y
+2(s1(x), y) -> s1(+2(x, y))
+2(x, +2(y, z)) -> +2(+2(x, y), z)
f1(g1(f1(x))) -> f1(h2(s1(0), x))
f1(g1(h2(x, y))) -> f1(h2(s1(x), y))
f1(h2(x, h2(y, z))) -> f1(h2(+2(x, y), z))